The Secrets of Life Database
You can use the search bar below to find specific information about species and diseases. Or you can scroll through the list.
If you’d like to read more about a secret you can click the heading which will take you to the full article on an external site.
Please Note: when you use the search bar, there is no need to press the ‘return’ key – results should appear immediately.
SEARCH RESULTS
  • Fruit flies, despite their tiny brains, are remarkably adept at navigating their surroundings. The secret lies in their ability to process visual information and adjust their flight paths accordingly. This efficient, low-energy strategy is exactly what the researchers sought to replicate in a new robot design.
    The new robot’s low-energy consumption and efficient navigation capabilities make it ideal for tasks in challenging environments, such as disaster response zones.
  • Spiders “listen” using their webs and tiny body hairs that sense motion. Researchers, on a walk in nature, observed a spiderweb responding to sound. They found spider silk could act like a perfect microphone, capturing a broad range of frequencies.
  • Gustave Eiffel, the tower’s designer, was fascinated by the strength and lightweight nature of bones and bamboo. He ingeniously incorporated these biomimetic principles into the tower’s design, resulting in a structure that is both incredibly sturdy and gracefully elegant.
  • Ostrich legs are incredibly efficient at storing and releasing energy. When an ostrich runs, its leg tendons stretch and then recoil, like a spring. This spring-like action helps the ostrich to run for long distances without getting tired.

    Engineers have studied ostrich legs and developed a bionic boot with a spring-like mechanism that helps to store and release energy when the wearer walks or runs. This can help to reduce fatigue and improve athletic performance.

  • Hydrogels found in Cacti can absorb and retain large amounts of water and have a wide range of applications, including:
    – being used to control the release of drugs into the body, reducing side effects and improving patient compliance.
    – creating scaffolds for tissue growth, providing a supportive environment for cell regeneration.
    – Improving water retention in soil, reducing the need for irrigation.
    – Absorbing pollutants from water and soil.
    – Storing energy in the form of water, providing a sustainable alternative to batteries.
  • Otto Lilienthal’s gliders, inspired by the shape of bird wings, were the first successful human-made flying machines. He made over 2,000 flights between 1891 and 1896, demonstrating the feasibility of human flight and paving the way for the Wright brothers’ powered airplane.
  • Janine Davis from ‘Evolution’, draws inspiration from the African savannas, where zebras, impalas, and wildebeests co-exist harmoniously.
    In both work and life, striving for true collaboration rather than mere compromise. By emulating Zebra’s teamwork, we can achieve the best results.
  • Here are a few examples of how biomimicry inspired by sloths is being used today:

    – Energy-efficient buildings. Researchers are studying the design of sloth fur to develop new materials for energy-efficient buildings. Sloth fur is very effective at absorbing water vapour, which can help to keep buildings cool and dry.

    – Self-cleaning surfaces. Researchers are also studying the structure of sloth fur to develop new self-cleaning surfaces. Sloth fur is covered in tiny grooves that help to repel water and dirt. This could lead to the development of new self-cleaning surfaces for everything from cars to solar panels.

    – Biomimetic robots. Researchers are also developing biomimetic robots inspired by sloths. These robots could be used for a variety of tasks, such as exploring hazardous environments or performing delicate surgeries.

  • Scientists have discovered that the secret to the Madagascar comet moth’s shiny cocoon is a special type of fibre that reflects light and keeps the moth cool. What could these fibres be used for?

    – Ultra-thin summer clothing that keeps you cool even when it’s really hot outside.
    – New types of clothing that can reflect sunlight and protect you from UV rays.
    – New types of medical devices that can be used to deliver light or drugs to different parts of the body.
    – New types of solar panels that can be more efficient at converting sunlight into electricity.

  • Zoo animal poo from baboons, pigs and lemurs could be used to treat diabetic foot ulcers and save the NHS £1bn a year. Phage therapy is a safe and effective way to treat bacterial infections, and it is not associated with the same side effects as antibiotics. It is also relatively inexpensive, and it could help to reduce the cost of treating diabetic foot ulcers.
  • Microplastics are threatening our oceans, but scientists have found inspiration in Mantarays to tackle the issue head-on. Manta Rays, with their unique filtering technique to consume plankton without clogging, have sparked the development of new technology for water treatment plants. By mimicking the efficiency of manta rays, we can prevent microplastics from polluting our precious oceans.
  • New research suggests that light-emitting diodes (LEDs) inspired by fireflies could revolutionize energy-efficient lighting. By mimicking the asymmetric microstructures found in firefly lanterns, scientists have improved light extraction efficiency in LEDs to a staggering 90 percent! Researchers have gained valuable insights into enhancing LED efficiency.
  • Scientists have taken inspiration from Lobster’s eyes to design new telescopes with wider fields of vision, revolutionizing our understanding of the universe.
    By mimicking the unique structure of lobster eyes, astronomers can now capture elusive cosmic X-rays, shedding light on celestial phenomena such as black hole formations, galaxy clusters, and cataclysmic supernovae.
  • Scientists have developed a krill-inspired robotic platform, called Pleobot, to study their unique swimming technique known as metachronal swimming.
    By better understanding the mechanics of krill swimming, researchers hope to develop autonomous underwater sensing vehicles. The Pleobot has already revealed how krill generate lift while swimming forward, providing valuable insights for future designs.
  • African wild dogs live in packs, and they make decisions in a unique way. When they need to decide if they should leave their resting area to go hunt, they “vote” by sneezing. If enough dogs sneeze, they all go hunting. The number of sneezes needed can be different depending on whether it’s a dominant (or “boss”) dog or a less dominant dog that starts the sneezing. Just like how these dogs vote to decide if they should go hunting, people in the United Nations Security Council (or UNSC) also vote to make important decisions about keeping peace in the world. By mimicking the African wild dogs, we could make the UNSC’s voting system better.
  • Cockroaches possess remarkable survival strategies, including agility in complex terrains and a resilient exoskeleton that inspires engineers. Their sensitive touch is being studied for advanced robotics, while their immune systems are being researched for potential breakthroughs in human health.
  • Badgers are exceptional diggers abilities and burrowing techniques have caught the attention of engineers and architects, who are studying them to design efficient tunnelling systems for underground infrastructure and mining. Badgers also possess a unique coat that regulates their body temperature in different weather conditions, inspiring scientists to develop innovative insulation materials for clothing, building insulation, and other thermal regulation applications.
  • Living in Africa’s parched deserts, this incredible beetle survives on just 1.3cm of rain per year. Its wings, covered in tiny bumps, attract water at their tips while repelling it on the sides. By capturing droplets from the foggy ocean breeze, it quenches its thirst. Inspired by this genius, scientists have created a water bottle mimicking the beetle’s trick! This innovation could collect up to three litres of water per hour, offering hope for water scarcity in hot, dry climates.
  • Badgers exceptional digging abilities and burrowing techniques have caught the attention of engineers and architects, who are studying them to design efficient tunnelling systems for underground infrastructure and mining. Badgers also possess a unique coat that regulates their body temperature in different weather conditions, inspiring scientists to develop innovative insulation materials for clothing, building insulation, and other thermal regulation applications.
  • The lotus flower’s self-cleaning ability is one of its most unique properties. The lotus leaf is covered in a nanoscopic waxy texture that prevents both water and dirt from clinging to its surface. Water droplets roll off the surface, taking dirt and debris with them, leaving the surface clean. It has inspired the development of self-cleaning surfaces for buildings, cars, and other products. These materials have the potential to replace toxic waterproof coatings and contribute to the development of sustainable and eco-friendly products.
    The lotus flower’s petals have a unique structure that helps to dissipate heat and maintain a cool surface temperature. This characteristic has inspired the development of cooling systems for buildings or electronics.
  • Moths have unlocked technological wonders through their incredible eyes. Their highly non-reflective eyes allow them to maximize available light in the dark. Inspired by this, scientists have developed a film for solar cells that prevents sunlight from reflecting off, enhancing their efficiency. But that’s not all! In medicine, materials mimicking moth eyes could reduce radiation doses during x-rays while improving image resolution. Plus, recreating their pattern on plastic opens doors to glare-free displays for TVs, phones, glasses, and more.
  • Scientists in Italy have built a soft robot that moves like an earthworm. The robot uses soft actuators, which are like small pockets of air that squeeze or expand to help it crawl. The researchers used the earthworm’s muscle movements and other features to make the robot. The prototype, which has been published in Scientific Reports, could be used for underground exploration, search and rescue operations in confined spaces, and the exploration of other planets
  • Scientists at the University of Houston have developed an artificial ‘skin’ that mimics the incredible colour-changing abilities of squid. With tiny sensors detecting environmental changes, the ‘skin’ responds by generating heat in specific areas, transforming its colour in just seconds! Drawing inspiration from nature’s perfect camouflage, this biomimicry innovation could revolutionize adaptive camouflage technology. Imagine soldiers blending seamlessly into their surroundings or clothes that change colours depending on your location.
  • Biotechnology company Modern Synthesis have just developed a sustainable fabric made from fermented bacteria. The bacteria are fed with “waste sugars” from old fruits and vegetables, which they use to produce nanocellulose fibres that are eight times stronger than steel and stiffer than Kevlar. When grown on a frame, the fibres combine to form a nylon-like fabric.

    Their production process is eco-friendly as it upcycles organic waste that would otherwise be discarded, reducing environmental pollution and waste. This breakthrough showcases the power of biotechnology in transforming waste materials into valuable resources and has the potential to revolutionize the textile industry!

  • Scientists are studying the unique properties of axolotl teeth and the mechanisms behind tooth regeneration to develop new dental treatments and materials for medical applications.

    By mimicking the natural processes of tooth regeneration, researchers hope to develop innovative solutions for human dental problems and other medical challenges. These discoveries have opened up new avenues of research into regenerative medicine and dental therapies, paving the way for new treatments for tooth decay, gum disease, and other dental problems.

  • Scientists have created a new type of battery that is inspired by the skin of a snake. This battery has the potential to be used in wearable electronics and soft robots. The battery units are flexible and stretchable because they overlap like the scales on a snake’s skin. This design makes the battery strong and resistant to damage.

    Even when the battery is deformed or stretched, it can still perform well. This new battery could help soft robots run for longer periods of time without being connected to a power source. It could also be used in wearable robots to help elderly people or people who need rehabilitation. This battery is reliable and can handle extreme conditions where the robot or device may be stretched or bent.

  • Lichin is a type of fungus that grows on trees and other plants. It is an important part of the ecosystem because it helps to break down dead plant matter, which helps to enrich the soil and support the growth of other plants.

    One interesting aspect of lichin is that it can be used as an indicator of air quality. Trees covered in a thick layer of lichin may be a sign of poor air quality, as the fungus thrives in environments with high levels of pollution and moisture. On the other hand, trees with little or no lichin may be a sign of clean air. This is because lichin is sensitive to changes in the environment, and it may not grow as well in areas with clean air and low levels of pollution.

  • Findings, published in the journal Proceedings of the Royal Society B: Biological Sciences, scientists said that ants could be used as a cost-effective way to identify cancers in patients because ants can detect cancerous tumours in urine by scent. Several cancers alter the odour of urine, and for the first time, experts have discovered ants’ ability to recognise it.

    “Ants are easy to train, fast learners, highly efficient, and inexpensive to keep… Ants can be used as bio-detectors to discriminate healthy individuals from tumour-bearing ones.” said study author Professor Patrizia d’Ettorre.

  • Horseshoe crabs are an essential species for human health and the environment. Their blue blood contains a chemical called LAL, which allows us to test the safety of medicine and vaccines. In fact, if you’ve ever received a vaccine, it’s likely that it was tested using horseshoe crab blood. This means that these creatures have played a crucial role in saving countless human lives.

    Not only do horseshoe crabs contribute to human health, but they also play a vital role in the ecosystem. They serve as a food source for a variety of animals such as sea turtles, shorebirds, and fish. Additionally, they help regulate the populations of other species by consuming their eggs and young.

    To ensure the survival of horseshoe crabs, scientists, and conservationists are working to find less invasive and less stressful methods of collecting and storing their blood. Additionally, efforts are being made to protect horseshoe crab habitat and populations. It’s crucial that we take the necessary steps to preserve this valuable species for the benefit of both humans and the environment.

  • Scientists have found that the paws of polar bears have special bumps called papillae that help them grip ice and snow. They studied the paws of polar bears, as well as other species of bears, using special instruments that can see very small details.

    They also made 3D models of the paws and tested them in different conditions to see how they worked. They discovered that the papillae on polar bear paws are taller than on other species, which helps them have better traction on snow. This could be used to design products that have better grip on slippery surfaces, like tyres or shoes.

  • A fungus that can break down plastic has been discovered by scientists at Kew Gardens. This fungus can break down plastic in a matter of weeks, rather than the years it typically takes for plastic to degrade. This discovery could potentially help combat the growing problem of plastic waste.

    It took just two months for the fungi – Aspergillus tubingensis – to biodegrade a type of plastic called polyester polyurethane (PU) into smaller pieces.
    PU is used in products such as fridge insulation and synthetic leather.

    Around 2,000 species are still being classified each year, say experts, and an estimated 93% of fungal species are still unknown to science.

  • Velcro was invented by a Swiss engineer named George de Mestral in 1941. He was inspired to create the hook-and-loop fastener after observing how burrs (also known as cockleburs) from a burdock plant stuck to his dog’s fur and his own clothing. He studied the burrs under a microscope and noticed that they had tiny hook-like structures that allowed them to cling to fabrics and other surfaces.

    De Mestral then spent several years developing a synthetic version of this hook-and-loop system, which he called “Velcro” after the French words velour (velvet) and crochet (hook). The product was first used in clothing and other textiles but has since been adapted for a wide range of applications, including in space exploration and medical technology.

  • Inspired by the Cheetah’s flexible spine, researchers have developed a new type of soft robot that is capable of moving more quickly on solid surfaces or in the water than previous generations of soft robots. The new soft robotics are also capable of grabbing objects delicately – or with sufficient strength to lift heavy objects.

    All-terrain robots that are fast and reliable would be a distinct tactical advantage to military ground forces, and could be used for other hazardous work like disaster relief and medical rescue, where speed is essential.

  • Termites build giant mounds in which they live – often in hot countries that have very hot days and freezing nights, yet the termite mound stays at a constant temperature. An architect in Zimbabwe studied these termite mounds to discover how they kept their temperatures stable. His research led him to explore using cooling chimneys and tunnels. Using these cold air is drawn in at night. The cold air cools thick slabs on the ground which stay cooler during the day and reduce the need for air conditioning, which saves electricity! Perfect for hot countries and combating climate change. Another example of biomimicry in practice.
  • The flexible shell of the armadillo has inspired a new material, which could be used in body armour, protective coatings and flexible electronics.

    Despite reports of bullets ricocheting off armadillos, these creatures aren’t bulletproof. However, the armadillo’s segmented bony plates have inspired researchers at Montreal’s McGill University to create a protective material out of glass plates segmented into hexagons. The material proved to be 70% more puncture-resistant than a continuous plate of the same thickness. Another example of biomimicry in practice.

  • Owls can achieve near-silent flight, thanks to specialised feathers with serrated (saw toothed) edges. These disrupt the sound of swirling air, making them quieter.

    Reducing noise pollution in urban areas is important as turbine engines (such as those in wind turbines, aeroplanes and drones) can be noisy. Now, a team from Xi’an Jiaotong University in China have examined the unique features of owl wings to create a new air foil design to reduce noise. Another example of biomimicry in practice.

  • Engineers have developed a new scanning technique inspired by the natural world that can detect corroding metals in oil and gas pipelines. By mimicking how bats use differing wavelengths of ultrasound to detect objects, hunt, and avoid predators, engineers have developed a new system that combines two separate types of radiation, fast neutrons and gamma rays, to detect corrosion — a major cause of pipeline leaks.

    The researchers suggest the technology could also be used in other applications, such as inspecting the integrity of structures such as bridges.

  • Bats are one of the most mysterious mammals alive. Their nocturnal habits and unique adaptations mean that bats’ biology still holds many secrets. It is possible that bats may hold the key to understanding diabetes.

    Despite consuming large amounts of sugar‐rich food, fruit bats have a long lifespan, raising the question of how these bats overcome potential hyperglycemia. This teaches us about diabetes in humans and Bat study part of the research being conducted by the Chiroglu project.

    Researchers need to identify specific genes that provide these adaptations. They have been analysing bat samples from museum collections around the world. This avoids the need to collect new samples from threatened species in the wild.

  • 500 plant species rely on bats to pollinate their flowers. Without bats, we wouldn’t have bananas, avocados, or mangoes. Bats also help spread the seeds for figs, nuts, and cacao… A world without cacao is a world without chocolate!

    Nectar-drinking bats have tongues with over 500 hairs, their method of drinking was studied by researchers who filmed them in slow motion. They discovered that, as the bat extends its tongue, blood fills the tongue tip in 40 milliseconds making the hairs stand up and trap the nectar.

    This discovery could be useful in making medical devices and miniature surgical robots that work inside the body, such as a modified endoscope that a doctor could use to look for plaque build-up or cancerous cells. Exciting research is underway.

  • A bee has inspired a flying 3D printer, invented by aeronautical researchers at Imperial College London for building and repairing structures that are hard to reach.

    Fleets of the buzzing builders could ultimately be used for construction in difficult and dangerous locations like clifftops and tall buildings, and to help with emergency repairs in disaster zones.

  • Sewage treatment plants are used to treat sewage and then discharge it into water streams, so that the untreated sewage discharge does not pollute the water body and make it deadly for water life such as fishes, water plants etc. Continuous discharge of untreated sewage leads to high level of concentration of pollutants in the water.

    93% of India’s wastewater is untreated, but this is not a unique issue in India. According to the United Nations, about 80% of the world’s wastewater is discharged into the environment untreated.

    Bangalore resident Tharun Kumar turned to cows for a solution. With help from the Biomimicry Institute, he has designed and built 50 sustainable sewage plants that work in a similar way to a cow’s stomach. The four chambers create a natural sewage treatment and use cow dung to recreate the bacteria in the stomach. The system has no moving parts, so doesn’t require any power or people to operate it.

    It’s also cheap because it doesn’t have bacteria that need oxygen and therefore no expensive fan motors. This kind of treatment system has saved 280 million litres of water and 315 MW of energy since its inception. This is equivalent to powering 35 villages in a year.

  • When a robot falls over, it usually can’t get up, at least not without difficulty. To address this issue, scientists are looking at the natural world, examining how click beetles right themselves after taking a tumble. This ability would allow a rescue robot to navigate a disaster zone riddled with obstacles, or a planetary robot extricating itself from an unexpected tumble on Mars.
    Researchers found that click beetles fling themselves into the air without the use of any legs, they have a hinge-like feature that lies inside the deep segment on the critter’s back. This hinge allows the beetle to flex its head back towards the ground, and then abruptly release, shooting the bug into the air.
    The discovery of this snapping hinge gave researchers a dose of bioinspiration — when biological evolution inspires technological innovation.
    The team experimented with different types and sizes of click beetles, filming the leaping beetles with high-speed cameras to capture their take-off angles and velocities. Research continues…
  • Cat’s eyes reflect light in the night because they have special pigments in their eyes, called tapetum lucidum, which improve their night vision.
    By studying this special feature, Percy Shaw developed ‘Cat Eyes’ used on roads across the world, which reflect light to guide drivers. There are now several variations including:

    The original Cats Eyes are white studs that separate lanes or the middle of the road.
    Red studs warn motorists that they are close to the left edge of the road.
    Amber studs warn drivers of the central reservation of a dual carriageway or motorway.
    Green studs signify the edge of the main carriageway where rest-areas and access roads exit the main road.
    Green/yellow studs warn drivers that there are temporary adjustments to lane layouts.

  • Researchers at the University of Illinois have developed an ultra-sensitive camera capable of sensing both colour and polarization that can help with imaging during surgery. The device is inspired by the mantis shrimp which can ‘see’ twelve colours, compared with just three colours perceived by the human eye.

    The mantis shrimp can therefore see things that humans can’t imagine. The bioinspired imager can potentially improve early cancer detection.

    And the device can be manufactured at low cost since it is so simple, making it available to hospitals around the world.

  • Whale sharks play a major role in maintaining the health of marine ecosystems and are now inspiring marine plastic clean-up operations.

    The whale shark swims with its mouth wide open, scooping up plankton and small fish as it moves forward. Without this ocean activity the amount of plankton in the sea would rise above normal levels which could be catastrophic, because it leads to the formation of algal blooms that have a toxic effect on fish, shellfish, mammals, birds…and any animals that eat these creatures, like humans.

    Now, inspired by the Whale shark, the WasteShark aquadrone, travels the oceans with its own wide-open mouth and huge belly scooping up plastic pollution!

  • An elephant’s trunk is its most recognisable feature, but it’s also an amazing
    collection of 40,000 muscles and no bones. Now German scientists
    have used the trunk to create a new bionic arm. The arm is strong and flexible but it’s also safe for humans to
    work with.
  • Petrichor is the earthy aroma that emerges when rain falls on dry soil and is produced by bacteria. “They’re abundant in soil,” explains Prof Mark Buttner, Head of Molecular Microbiology at the John Innes Centre, “So when you’re saying you smell damp soil, actually what you’re smelling is a molecule being made by a certain type of bacteria.” The molecule, Geosmin, is produced by Streptomyces bacteria which are present in most healthy soils. And, remarkably, these same bacteria are also used to create antibiotics used to control invading microbes in humans, plants, and animals.
  • A cat’s brain is still 80x faster than a supercomputer.

    So a University of Michigan computer engineer, Wei Lu, is working on developing a mini-sized supercomputer that can mimic a cat brain. The intention is that it will be capable of learning and recognizing, as well as making more complex decisions and performing more tasks simultaneously than conventional computers. A mammalian brain does multiple things at once.

  • Seals, whales, walruses and little mummy all happily splash about in the chilly ocean
    kept warm by a thick layer of blubber. Sea otters, however, are just as happy swimming in freezing waters, even though they are quite streamlined.

    The secret is their amazing fur coats – roughly 1,000 times more dense than human hair – which traps air bubbles and insulates the creature from the cold.

    No one had ever studied the fur’s mechanics, until a team of researchers at MIT examined otter and beaver fur. Their results could herald a range of new bio-inspired materials, including furry wetsuits!

    The researchers found that individual otter hairs hold air between them trapping warm pockets of air.

    Currently, wetsuits are made of heavy rubber materials, but if you could make a suit from a textile that traps the same thickness of air as the thickness of a typical rubber suit, it would be ten times as insulating and significantly more lightweight.

  • One scientist thinks he’s found part of the solution to our energy crisis deep in the ocean. Frank Fish (his real name!), a fluid dynamics expert and marine biologist at Pennsylvania’s West Chester University, noticed something remarkable about the flippers of humpback whales. Humpbacks have cricketball-size bumps on the forward edge of their limbs, which cut through the water and allow whales to glide through the ocean with great ease. But according to the rules of hydrodynamics, these bumps should put drag on the flippers, ruining the way they work.

    Professor Fish decided to investigate. He put a 12-foot model of a flipper in a wind tunnel and watched, amazed.The bumps, called tubercles, made the flipper even more aerodynamic. It turns out that they were positioned in such a way that they actually broke the air passing over the flipper into pieces, like the bristles of a brush running through hair. Fish’s discovery, now called the “tubercle effect,” not only applies to fins and flippers in the water, but also to wings and fan blades in the air.

    Based on his research, Fish designed bumpy-edge blades for fans, which cut through air about 20 percent more efficiently than standard ones. He’s now launched a company called Whalepower to manufacture them and will soon begin licensing its energy-efficient technology to improve fans in industrial plants and office buildings around the world. But Fish’s big fish is wind energy. He believes that adding just a few bumps to the blades of wind turbines will revolutionize the industry, making wind power more valuable than ever.

  • The suckers of an octopus’s tentacles are highly sensitive wonderful pieces of machinery. So much so that scientists are studying them in relation to one of the most delicate areas of surgery: soft tissue transplantation.

    This is the process in which organs and tissues are moved from one part of the body to another — either within the same person or between a donor and a recipient — to restore essential bodily functions or even to save lives.
    At the University of Illinois Urbana-Champaign, U.S., researchers watched the way an octopus picks up both wet and dry objects of all shapes, using small pressure changes in its suckers. This led them to create what they call a manipulator, which looks a bit like a tiny sink plunger!

    The ‘suction’ end is flat and has a temperature-responsive layer of soft hydrogel (a bit like thick jelly). It is attached to an electric heater in the handle. When the heater is turned on, the hydrogel warms up, which makes it shrink. The hydrogel is then pressed against a sheet of tissue that doctors want to pick up and the heater is turned off. As a result, the hydrogel expands again and, in a movement rather like that of the octopus, it creates suction. The tissue is then lifted and gently placed on the target.
    The heater is switched on again, making the hydrogel shrink and release the sheet. The entire process takes about ten seconds, which is an astonishing 180 times faster than normal — all thanks to an octopus’s sucker. It’s still a work in progress, but it’s a fascinating area of research.

  • Tiny snow flea’s transplant power Snow fleas aren’t actually fleas —they don’t bite and they are actually very good for the environment! You’re more likely to notice them during the winter months, when they can be seen jumping around on snow. Snow fleas can survive sub-zero temperatures without freezing and contain a secret that could extend the ‘shelf life’ of organs used for transplants.

    Normally, the cold makes ice crystals form inside the cells of plants and animals. When these crystals grow, they draw water out of the surrounding cells, which destroys their structure, ultimately killing the cell.
    However, snow fleas contain unique molecules called antifreeze proteins (AFPs) which stop cell damage when things get a little too chilly by lowering the freezing point of the water in the cells.

    After studying snow fleas, scientists have now managed to develop synthetic AFPs. These could be critical in preserving organs for transplant surgery. AFPs (if injected into the organs, for example) would allow them to be stored at lower temperatures without them freezing.

    With thousands of people waiting for a transplant — it’s estimated there are currently 7,000 in the UK — the ability to transport organs farther afield, or being able to store them for longer periods, is vital. As well as its potential for use in organ transplants, the researchers suggest it could help to increase frost resistance in plants, and inhibit crystallization in frozen foods.

  • Rich in nutrients such as phosphorous and nitrogen, whale faeces help to fertilise the upper waters of the ocean and provide the starting point for marine food chains across the world. However, with whale populations reduced to as little as 5% of their historic levels by the impact of whaling, there simply isn’t enough to go around.

    To prevent the oceans from being caught short, an international team of researchers are set to release artificial whale poo into the Indian Ocean in the coming months, according to New Scientist.

  • Close-up views of the side and top of harbour seal whiskers reveal that they are not circular, but wavy and elliptical. Seals have an incredible ability to track their prey underwater thanks to the unique geometry of their whiskers. When a seal swims forward, the animal’s whiskers did not appear to vibrate, as most cylindrical objects do.

    Recreating the complex shape of Seal whiskers have inspired cheaper and more effective flow sensors for unmanned underwater vehicles that could monitor currents and detect disturbances in the water.
    Engineer, Aidan Rinehart, said. “There’s some really amazing things happening in nature, and we don’t even really know most of the time.”

    When water flows around an irregular structure, it forms a lazy zigzag wake that makes the structure rattle. These vibrations damage almost everything put in the water, from the columns of wind turbines to the risers on oil rigs, and they cost a fortune—British Petroleum estimates that countering the damage eats up 10% of their multi-billion dollar budget for deep-sea projects.

    The proportions of the whisker, produced by millions of years of natural selection, were precisely what several different groups of engineers had calculated to be ideal for reducing vibration. Evolution and human problem solving had collided at the same solution.
    Research published by Cleveland, Ohio, engineers explains how a seal’s whiskers could teach us how to build bridge struts and oil wells that last longer underwater.

    Findings from the research could also help reduce the cost of building wind turbine towers.

  • Many studies have shown scorpion venom to be effective as a pain reliever and as a treatment for illnesses such as lupus, rheumatoid arthritis, certain types of cancer and Parkinson’s disease. Some scorpion venom has antibacterial properties too. The venom can kill bacteria like staphylococcus and also drug-resistant strains of the tuberculosis bacteria. Scorpion venom is also being used to attack the malaria parasites found inside mosquitos.

    Researchers created “tumour paint” by attaching fluorescent molecules to scorpion venom. When they bind to cancer cells, they essentially light them up, allowing doctors to precisely locate and assess the extent of malignant growths in the body. The medication selectively binds to brain tumour cells but not to healthy cells in the case of brain tumours. This permits brain surgeons to see malignant tissue more easily during surgery. The toxin produced by the ‘deathstalker’ Scorpion allows researchers to see clumps of cancer just 200 cells large – making it 500 times more sensitive than MRI scans.

    A new robot has been built to extract venom faster and more safely than ever before. Mouad Mkamel and his team of reserachers designed the robot and explains “It is designed to extract scorpion venom without harming the animal and to provide more safety for the experimenters.”

    Scorpion venom is one of the most precious materials in the world – a gallon would cost about $39 million to produce. Researchers are focused on identifying the crucial ingredients in the venom and producing it in a synthetic form.

  • Jellyfish have already inspired ideas for bird-safe wind turbines and artificial hearts, but now a team of researchers has studied jellyfish’s tentacles to design a better way to capture dangerous cancer cells roving through the human bloodstream. Jellyfish use long tentacles, or arms with sticky patches, to snag tiny prey. Observing this, inspired scientists to design a device that latches onto proteins found in certain leukemia cells as well as in lung and colon cancers.

    Identifying metastatic cancer cells earlier would help doctors personalise their patients’ treatment. And for leukemia patients, it could one day help doctors to judge if a treatment is working without resorting to painful bone-marrow sampling.

  • The Black Butterfly, with wings that are very efficient at absorbing rather than reflecting light, could be the key to boosting the efficiency of a promising type of lower cost photovoltaic technology which converts sunlight into electrical energy.
  • Butterfly wings have inspired the colour displays for e-readers. Qualcomm created the first full-colour, video-friendly e-reader prototype based on the way butterfly wings can still gleam in the brightest sunlight. The display, known as Mirasol, works by reflecting light, instead of transmitting light from behind the screen the way LCD monitors do. The screen can be read in bright sunlight and has longer battery life too! Butterfly wings have also inspired: high-tech textiles, self-cleaning surfaces, cosmetics, and security tags.
  • Spider silk is one of nature’s most amazing materials. It’s five times stronger than steel by weight. Spider silk is both elastic and lightweight. It must be sticky in certain areas to catch prey, and non-sticky in others to allow the spider to run across it. Scientists have recently developed a medical device that mimics this property: a flexible, sticky tape that can be peeled away from an injury without hurting the tissue beneath. The adhesive material could be beneficial for attaching tubes or sensors to newborn babies and on the elderly’s delicate skin.

    But here’s a brief list of all the other inventions spider’s silk have inspired!
    • Bullet-proof clothing.
    * Wear-resistant lightweight clothing.
    * Ropes, nets, seat belts, parachutes.
    * Rust-free panels on motor vehicles or boats.
    * Biodegradable bottles.
    * Bandages, surgical thread.
    * Artificial tendons or ligaments, supports for weak blood vessels.

  • Scientists aiming to document the effects of climate change in the icy waters of Greenland’s Baffin Bay sought the assistance of narwhals, the so-called “unicorns of the ocean” noted for their single 9-foot tusks and ability to survive freezing water.
    Kristin Laidre, a marine biologist at the University of Washington, and her colleagues fitted thermometers and satellite transmitters to 14 narwhals and followed them while they spent the winter in the Bay in 2010. The resulting data set was the most thorough collection of water temperature data for the area ever collected. Until now, this has been difficult to accurately study.
  • Scientists believe that sharks could inspire a new type of surface that can attack bacteria. Researchers have designed a coating that is infused with antimicrobial agents with the patterned diamond-like texture of shark skin.
    Fighting bacteria is an ongoing battle, resulting in more than 2 million infections and 23,000 deaths in the USA every year, according to the U.S. Centers for Disease Control and Prevention.
    Sharklet AF™ is a coating designed to mimic a shark’s skin reducing the ability of bacteria to adhere to surfaces. The shark skin surfaces with TiO2 nanoparticles exposed to UV light for one hour killed off over 95 percent of E. coli and 80 percent of Staphylococcus aureus.
  • Giraffes have discovered a solution to a condition that kills millions of people each year: high blood pressure. Scientists are only beginning to understand their secrets, which include compressed organs, changed heart rhythms, blood storage — even the biological equivalent of support stockings.
    Giraffes naturally have extremely high blood pressure which would create all kinds of issues in humans, including heart failure, kidney failure and swelling in the legs. This is due to their extremely long necks, which means their heart has to pump blood has a long way, fighting against gravity.
    In people, chronic high blood pressure causes a thickening of the heart muscles. The left ventricle of the heart becomes stiffer and less able to fill again after each stroke, leading to a disease known as diastolic heart failure. Researchers have found that the left ventricles in Giraffes also become thicker, but without the stiffening, or fibrosis, that would occur in people. This discovery is now inspiring biomedical scientists to think about the problem in new ways and to find novel approaches to a far-too-common disease.
    And…
    A condition in pregnancy called pre-eclampsia can lead to severe complications that include liver damage, kidney failure and detachment of the placenta. Yet giraffes fare just fine. A team of researchers are hoping to study the placentas of pregnant giraffes to understand and replicate these unique adaptations.
  • A unique antibody produced by llamas could be developed as a new frontline treatment against COVID-19 and could be taken by patients as a simple nasal spray.
    Llamas, alpacas, camels and other members of the camelid family produce a class of antibodies that allow scientists to determine the structures of otherwise impossible-to-study proteins in the body, understand how those proteins malfunction in disease, and design new drugs that act on them.
    Dr Andrew Bourne, Director of Partnerships at EPSRC, said:
    “Utilising the unique properties of llamas’ nanobodies, this research could lead to an important new form of treatment for COVID-19 that is cheaper to produce and easier to administer.”

    The latest technology allows scientists to look for potential medicines in the natural world without collecting or harming a single animal. You can observe them, or use their DNA.

  • The gastric-brooding frog is the only known frog to give birth through its mouth (nice!). It lays its eggs before swallowing them, so gestation takes place in its stomach. During gestation, the frog appears able to suppress its stomach acid production. This discovery may have significant implications for the treatment of peptic ulcer disease.
    Professor Mike Archer from the University of New South Wales said, “She would open her mouth and out would pop little frogs. The first people that saw that were aghast. By the time anybody got excited about it, suddenly it was extinct.”
    No wild specimens have been reported since 1981.
    However, Scientists at the University of Newcastle and University of New South Wales announced in March 2013 that the frog would be the subject of a cloning attempt, referred to as the ”Lazarus Project”, to resurrect the species. Embryos were successfully cloned, and the project eventually hopes to produce a living frog.
  • The cone snail has some of the most powerful venom on the planet. It’s a mixture of more than a hundred different toxins. These toxins block the signals that tell the muscles to contract, paralyzing the victim. Cone snail species can create up to 140,000 peptide compounds, many of which could be useful as human treatments. However, only a few hundred have been identified.
    One chemical, ziconotide, is thought to be 1,000 times more effective than morphine (and it’s not addictive) and has been demonstrated to give considerable pain relief for advanced cancer and AIDS patients in clinical studies. In studies, another cone snail chemical has been found to protect brain cells from death during periods of reduced blood flow.
    It might be a game-changing treatment for those who have had a stroke or suffered a brain injury, and it could even help patients with Parkinson’s and Alzheimer’s disease. Cone snail peptides might also be used to create therapies for urinary incontinence and heart problems.
    Sadly, because cone snails are endangered (due to habitat degradation and the enormous value placed on their exquisite shells by collectors) medical research may lose out on future groundbreaking new medications.
  • A Woodpecker can pound its head at into tree trunks 12,000 times per day, at speeds of 6 to 7 m/s. With each peck, a woodpecker can absorb more than ten times the force it would take to give a human a concussion, and yet, despite this frequent, high speed head banging, the birds experience no brain damage! Woodpeckers’ brains are protected against harm by a range of structural modifications, according to researchers. For example, the area of their skulls closest to their brains is thicker and spongier, particularly near the forehead and at the back of the brain. They also have a horseshoe-shaped hyoid bone that wraps around the skull, maybe acting as a seatbelt to protect the brain from bouncing about upon impact. Industrial designer, Anirudha Surabhi, has created a radical, new, super-strong Kranium bike helmet, which protect cyclists’ heads by mimicking features of the woodpecker’s distinctive anatomy. It uses a lining made out of material that isn’t commonly seen in bicycle helmets: cardboard. It’s a special dual density cardboard with an internal honeycomb structure. According to laboratory tests, the Kranium liner absorbs three times as much force as polystyrene helmets, and, because 90% of the liner is air, it’s also 15% lighter. Force India, a Formula 1 team, has asked Surhabi to design helmets for its pit crew. (2014)
  • The North American porcupine has around 30,000 barbed quills to defend against predators. These quills penetrate the skin more effectively than a hypodermic needle, and their small backwards-facing barbs at the tip make them tough to take out. Jeffrey Karp of Harvard University and his colleague Robert Langer have been researching quill design that may lead to improved surgical staples, wound dressings, and adhesives. Drugs and chemicals could be delivered through patches adhering to the skin using hollow versions of quill-inspired needles. Scientists are also experimenting with biodegradable materials that can be broken down in the body once they are no longer required.
  • A shocked sea cucumber’s reaction has sparked the development of a novel material that might one day be used to make brain implants. The capacity of the Sea Slug to morph might aid in the development of therapeutic devices for individuals suffering from Parkinson’s disease, stroke, or spinal cord injury. The material can go from hard to flexible in a matter of seconds, and it might be utilised to create enhanced brain electrodes that are stiff initially implanted but supple inside the body. Currently, several research groups are working to construct “artificial nerve systems” to treat various illnesses.
  • Malaria causes severe illness in 500 million people worldwide each year, and kills more than one million. It is estimated that 40% of the world’s population are at risk of the disease. But, thanks to the Sea Cucumber, we now have a new weapon against this widespread disease. Sea cucumbers could provide a potential new weapon to block transmission of the malaria parasite. The slug-like creature produces a protein, lectin, which impairs development of the parasites. To stimulate the mosquitoes to produce lectin, the researchers fused part of the gene from the sea cucumber which produces the protein with a gene from the insect. Ultimately, one aim of our field is to find a way of genetically engineering mosquitoes so that the malaria parasite cannot develop inside them”Professor Bob Sinden, Imperial College London.
  • Geckos have an incredible ability to stick to surfaces. Some studies suggest the over-engineered reptiles can hold hundreds of times their own body weight. The remarkable adhesive abilities of geckos and mussels have been combined to create a super-sticky material. Unlike other adhesives inspired by the nimble reptiles, “geckel” can attach to both wet and dry surfaces. Tests showed that the material could be stuck and unstuck more than 1,000 times, even when used under water. Its staying power comes from coating fibrous silicone, similar in structure to a gecko’s foot, with a polymer that mimics the “glue” used by mussels. “I envision that adhesive tapes made out of geckel could be used to replace sutures for wound closure, and may also be useful as a water-resistant adhesive for bandages and drug-delivery patches,” said Professor Phillip Messersmith.
  • The future of space exploration could lie in biomimetics, where engineering meets biology. In effect, it steals nature’s evolutionary tricks to create revolutionary applications. One creature under observation is the Flying squirrel a creature well known for their ability to glide between trees at the top of a forest canopy. The flying squirrels and gliding possums have a membrane of skin extending between the wrist and ankle on each side of the body. When the animal launches itself from a high branch it spreads its limbs wide apart and the taut membranes act as a parachute: the great gliding possum can make leaps covering 100 metres in this way. Keith Paskins of the University of Bath, is trying to mimic flying squirrels for use in unmanned crafts. By incorporating jumping as a flying squirrel does, the craft could conserve energy by using gliding to fly to the surface.
  • A protein that gives fleas their incredible leaping ability might be used to heal damaged arteries. Scientists have harnessed the gene that makes resilin to develop a super-strong rubbery polymer that may be used in surgery. Resilin allows fleas to leap great distances, and it also permits flies to beat their wings at up to 200 times per second.
    The artificial form of the polymer endures stress and bounces back into shape outperforming even the highest-grade rubber. According to the researchers, it might be used to replace similar elastic material in the walls of damaged arteries.
  • The venom of scorpions is essential in a breakthrough treatment for a type of brain cancer that is otherwise incurable. Researchers have created a “man-made” scorpion venom that can be used to treat brain tumours. Scientists have devised a method for isolating the essential proteins and peptides in venom so that they may be utilised to inhibit cancer cell development. The venom serves as a vehicle for delivering radioactive iodine to tumour cells that remain after surgery. Human trials began in 2020.
  • Researchers are to examine whether different types of snake venom contain chemicals that could prevent heart attacks and strokes. The British Heart Foundation is to fund research being carried out by a joint team from Oxford, Birmingham and Liverpool Universities. Heart attacks and strokes are caused by the clogging up of arteries with fatty material. This can lead to tearing in the weakened blood vessel walls, and the formation of clots. If the clots then become jammed in the blood vessels, they can cut off blood supply to the heart or brain, resulting in a heart attack or stroke. Snake venom is already known to contain a variety or toxins which can either bring on or stop this process.
  • Researchers believe that a medication derived from rattlesnake venom might effectively cure stroke sufferers. According to the researchers, Ancrod, an investigational medicine, decreases blood levels of a blood-clotting substance and may be able to reverse the effects of a stroke. It may also protect against future strokes and is less likely to cause internal bleeding than currently available clot-busting drugs, according to the researchers. It helped 42% stroke patients recover their physical and mental abilities within three hours in a trial of 500 participants.
  • A primitive worm could help to screen new medicines, according to research. Scientists have genetically modified nematode worms (C. elegans) so they avoid and crawl away from certain chemicals. The UK/Dutch team believes the worms could help to provide a simple method for looking at the effectiveness of compounds for new drugs. Nematode worms are less than 1mm long and live in the soil feeding on bacteria. Through receptors in their nerves, they can detect and avoid harmful chemicals in their environment and so could help scientists understand screen new drugs for potential problems. In the future the worms could be modified to carry a range of different human receptors that scientists are targeting for new drugs.
  • A boy with a rare illness has been given a new lease of life thanks to a groundbreaking treatment using protein from hamsters. Oliver Moody, from Leeds, has Hurler Syndrome and is missing a vital enzyme which breaks down harmful chemicals in his organs. The condition causes a build-up in the sufferer’s cells causing symptoms such as impaired hearing and vision and skeletal deformities, and over time causes progressive damage and disease. The treatment, which uses the genetically-modified proteins from Chinese hamsters, helps clear his body of toxins so he can lead a normal life.
  • Just one metre square of a new super-sticky material inspired by gecko feet could suspend the weight of an average family car, say its inventors. The plastic, known as Synthetic Gecko, has been developed by researchers at aerospace and defence firm BAE Systems.
  • A drug made from the ocean’s sea squirt may help those with a rare form of cancer, research suggests.Two patients treated with the drug saw their tumours disappear completely, while others saw their tumours shrink. Microbes that live within the sea squirt produce certain compounds which have been extracted to produce the drug. Dr Emma Knight, science information manager at Cancer Research UK, said: “This early-stage research highlights the potential of tapping into Nature’s resources for future cancer treatments.”
  • The ability of worms to convert potentially harmful fats into helpful ones might be harnessed to cut heart disease and strokes. Doctors believe that the worm chemical could help protect the arteries of patients undergoing heart surgery by damping down potentially damaging inflammation. Nematode worms, despite their tiny size, appear to be better at coping with Omega-6 fatty acids – a fat which contributes to blocked arteries in humans. The worms naturally convert Omega-6 to Omega-3 fatty acids, which decrease inflammation in blood vessels, and help prevent the formation of blockages. Scientists in the US have found that a particular chemical made by the worm appears to have a beneficial effect on human cells in a test tube.
  • Scientists have found a gene in a primitive worm that may give vital clues about the development of cancer. The gene, in the nematode worm, is similar to the human breast and ovarian cancer gene BRCA1.
    BRCA1 is known to stop cancer by repairing damaged DNA, but how it does this is not known, this soil-dwelling nematode has less than a thousand cells and is around one millimetre in length – but it may provide the answer.
    Professor Robert Souhami, director of clinical and external affairs at Cancer Research UK, said: “Studying the BRCA1 counterpart in the worm will accelerate our understanding of how defects in this gene can lead to breast cancer and in the future will offer possibilities for prevention and treatment.”
  • A tropical worm could one day help to relieve the pain of millions of people with rheumatoid arthritis and similar diseases.
    Researchers in Scotland have found that secretions from a parasitic worm, called a filarial nematode, have an anti-inflammatory effect.They believe the discovery could help people with autoimmune diseases – conditions where the body’s own immune system attacks itself for no apparent reason.The worm lives off humans and is carried by hundreds of millions of people in the tropics, where the incidence of autoimmune disease is much lower. Professor William Harnett, who has led the study, described the finding as exciting. “It still seems ironic, however, that a parasitic worm, which lives off humans may also provide a means to relieve suffering for millions of people… The prospect of treating painful inflammatory diseases with a drug that doesn’t completely suppress the patient’s immune system is a major medical breakthrough.”
close
Search